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RADIANT--CONVECTIVE HEAT-EXCHANGE PROBLEMS 
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A new analytical method is developed for solution of nonstationary radiant~convec- 
tire heat-exchange problems in a moving, viscous, absorbing, radiatlng, and anlso- 
tropically scattering medium. The method is applied to solution of the problem 
for a semiinflnite body. 

The simultaneous transfer of energy by thermal conductivlty, convection, and radiation 
is described by a complex system of equations including the differential equations of contln- 
uity and motion of the medium, the integrodifferential equation of energy transfer, and the 
integral radiation equations [1-3]. Solution of this system is exceedingly difficult. How- 
ever, in the case of a viscous incompressible medium the system can he separated into gasdy- 
namic and thermal systems [4, 5]. The closed system of five equations describing the gas- 
dynamic problem thus obtained permits determination of five unknown functions p(M, t), p(M, 
t), and V(M, t). Assuming that this problem has been solved beforehand, we turn to the non- 
linear integrodifferential equation of the form [2] 

drdt a (M, t) v2T-- CrP (M, t) (N, t) fl, (M, N) [T4.(N, t) -- 
F 

--T4(M, I)]dFN+4.fot(P, t)z,(M, P)[T4(p, t) --T4(M, t)]dV r } -t- 

v 

F (M, 0 
Cpo (M, t) ' 

(x) 

where 
F (M, t) dp ~ 2~Diss[(V)+pq. (2) 

dt 

The resolvents R,(M, N) and x,(M, P) appearing in Eq. (i) are defined by expressions present- 
ed in [i]. 

To solve Eq. (i) it is necessary to specify boundary conditions. These consist of an 
initial temperature distribution in the medium 

T (M, o) = T~ (M) (3) 

and the thermal regime at the boundary of the radiating system. If the boundary surface of 
the radiating system is maintained at a specified temperature, then 

T (M, t) [M e r = Tw (M, t). ( 4 )  

For the  case  of  r ad i an t - - convec t ive  hea t  t r a n s f e r  dur ing  motion of a v i s c o u s ,  absorb ing ,  r ad-  
i a t i n g ,  and anisotroplcally scattering medium, the boundary condition may be represented in 
the form 

~ OT M 
= - -  aem [r  (N, t) - -  ro (N, 01 - -  a0A IT 4 (N, 0 - -  ~ ( N ,  01. ( 5 )  

On e r 

We will introduce the dimensionless variables x = Ix*, y = Zy*, z = Zz*, t = (Za]ao)t *, 

T = TOT*, a = aoa*, a = ko~*, p = POP*, q = qoq*, P = App*, V = Vou fl, = (i/Z2)fl ...., X, = 
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(i/12) X,, where I is the characteristic dimension and Vo is the characteristic velocity of 

medium motion. 

In these new v a r i a b l e s ,  i f  we c~M.t t h e  a s t e r i s k s ,  Eqs, ( 1 ) - (5 )  t a k e  on the  form 

a T  +Pe(V, vT)--a(M, t) vZT= BuPe cz(M, t) ,• 
at Bo p (M, t) 

• { ,fA(N' t)fl ,(M, N) IT4(N, t)--T~(M,t)ldFN+4Bu• 
F 

x e (P, t) ~, (M, P) [7'* (P, t )--  T* (M, t)l dVp ~ P (M, t) " 

T (M, 0 ) =  T~ (M), 
T (,',4, t) [M r F = Tw (M, t), 

(7) 
(8) 

07"an ]Me ~, = - - B i I T ( N ,  t)--T~(N, t)l--Biplr*(N, t ) - -~(N,  t)l, (9) 

where 

F(M, t)-- EuEc2 [' Opat +Pe(V, VP) ] ~ 2E__eP__~eRe Di~V~)+Osp(M' t)q(M, t), (10) 

and t he  d i m e n s i o n l e s s  complexes Pe, Bu, Bo, Bi ,  Bip ,  Eu, Ec, Re and Os a re  t h e  P e c l e t ,  Burg-  
e r ,  Bol tzmann,  B l o t ,  r a d i a t i o n  B l o t ,  E u l e r ,  E c k e r t ,  Reynolds ,  and O s t r o g r a d s k i i  numbers [6] ,  

We will seek a solution of Eqs. (6)-(9) in the form of a series in powers of the Burger 
number Bu 

r (M, t ) =  ~ BunT. (M, t). (11) 
n=o 

Substituting Eq. (11) in Eq. (6) and equating coefficients of identical powers of Bu, we ar- 
rive at the following infinite sequence of differential equations with partial derivatives 

07'o + Pe Or, v To) - a (M, t) V 2 To = F (M, t) , ( 1 2 )  
at o(M, t) 

OT! + Pe (V, v T 0 - -  a (M, t) v*T~ = P___!_e a (M, t) .[ A (N, t) fl. (M, N) [Jo (N, t) - -  Jo (M, t)l dF~, 
at Bo p (M, t) r 

aT, +Pe(V, vT2)--a(M,  t) v 2T , '=  Pe a(M, t) 
at Bo p (M, t) 

(13) 

{.[ A (N, t) O, (M, N) [J, (N. t) --  J, (M, t)l dFN -?. 4 .[ ~ (P, t) X, (M, P) IJo (P, t) --  Jo (M, t)l dVp}, 
F V 

(14) 

OTn "; Pe(V, v T . ) - - a ( M , t ) V  2 T . =  Pe a(M, t) 
Ot Bo p (M, t) 

• { ,f A (N, t) ~ (M, N) V~-, (N, t) - -  J~_, (M, t)] dF,~ 
F 

-}- 4 f a (P, t) X, (M, P) [J~_= (P, t) -- J.-= (M, t)l dVp}, 
v 

(15) 
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where 

n m n--ln 

Jn (]Vl, t) = ~=~ ~ ~=~ rl, (z~, t) rr,,-k (M, t) T, (M,. t) rn-m-l(M, t). 
m = 0  k=O l~ffiO 

(16) 

Similar substitution of Eq. 
functions Tn(M, t) : 

initial conditions 

To (M, O) = Ti (M), T, (M, O) = 0 . . . .  T .  (M, O) = 0 . . . . .  

boundary condltlons in the c a s e  of Eq. (8)  

T O (M, 0 IM e r = Tw (M, t), T,  (M, t) IM ~ F = 0 . . . . .  T .  (M, t) I~ e F = 0 . . . . .  

i n  t h e  c a s e  o f  Eq. (9) 

070 t = - -  Bi [T o (At, t) - -  T c (N, t)] .... Bip [J0 (N, t) - -  ~ (N, t)], 
On Me F 

OTI [ =: - -  Bi T~ (At, t) - -  BipJ l (N,  t), 
Oll M C F 

�9 . . ~ . ~ . . . . . , �9 . . . . .  �9 

0T. [ -- BiT. iN, t) - -  BipJ. (N, t). 
On Me r 

(ii) in Eqs. (7)-(9) leads to boundary conditions for each of the 

(17) 

(18) 

(19) 

(20) 

(21) 

It should be noted that each of the equations of the infinite sequence Eqs. (12)-(15) 
is itself a linear inhomogeneous partial differential equation wlth a known rlght-hand side. 
Thus, the proposed method for solution of nonstationary radlant--convective heat-exchange 
problems reduces the solution of the nonlinear integrodlfferentlal equation (6) to solution 
of a series of linear differential equations, each of which is a further refinement of the 
solution obtained on the basis of preceding equations of the sequence. 

If the medium is immobi le  (V E 0) and nonradlating [~(M, t) E 0], then from Eqs. (12)- 
(16) and (17), (19)-(21) we have, assuming p = const for simplicity, 

OTo = avZTo -'i- Os q, (22) 
Ot 

To(M, 0) = T i (M), (23) 

OTOon [Me v =  Bi [T o (N, t) - -  T c (N, t)] + Bip [T4o (N, t) - -  T~ (N, t)]. (24) 

The f o l l o w i n g  f u n c t i o n s  Tn(M , t )  (n = 1, , 2 , . . . )  as  can e a s i l y  be  s e e n ,  a r e  i d e n t i c a l l y  e q u a l  
t o  z e r o .  The s o l u t i o n  o f  Eqs .  ( 2 2 ) - ( 2 4 )  p r e s e n t s  no d i f f i c u l t i e s  [ 3 ] .  In  p a r t i c u l a r ,  f o r  
a semilnflrtite medium (assumlng a ,= const) we have 

to(X, O= r~(~)o(x, t; ~, o)a~+Os j'dT q (~, ~) G (x, t; ~, "0 ~ + . I t ( z ,  ~) O (x, t; O, ,OAT, ( 2 5 )  
0 0 0 0 

where  

G(x,  t; [, ~)---- 2V-~(t--~-T) P 4 ( t - - z ) J  4 ( t - z ) J ]  

f (z, t) = Bi [Te (t) - -  zl q- Bip [T~= (t) - -  z~]. z (t) = T (0, t); 
t t 

z (t) q- Bi .[ z (x) G (0, t; 0, x) d'r + Bip ~ z' (x) G (0, t; 0, ~) dr = 
0 

(26) 

(27) 
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. =  TI(DG(0, t; t, 0)d~-l-Os &r q~, x)G(0, t; [, x)d~ 
0 

t t 

@ Bi ! T~(x)G(O, t; 0, x)d~ q- Bip I ~(x)O(O, t; 0, ~)dx. (28) 

If Ti(x) - T i = const, Tc(t) - T c - const, q (~, T) = qo = const, then Eq. (28) simpli- 
fies, taking on the form 

t t 

Bi [~ z(x) dx-+- Bip S z a(x) dx =Ti- t -  2Tc(Bi-+- B[pT~) ]f-{-+Osqot. 
z ( t ) . q - ~ . )  I / t _  x ~ t t'--x V'-~ (291 

0 0 

The solution of Eq. (29) may be written in the form of an infinite series 

z(O = 2 c. t"/g, (30) 
n=~O 

where 

co = Tt ;  c,  = 2 IT c (Bi -1- BipT~ - -  ( B i T i  "-i- Bipf , ) l  . 
r " ~  

r = Os  qo - -  11' n (Bi c,  q -  Bip.  f , )  . 
2 

Cn+|~ - -  V-~- (n -[- l)l (Bic.+ Bipf.), n -- 2, 3 .... ; 

/1---171 

m = 0  k~O l=~0 

( 3 1 )  

Substitution of Eq. (31) in Eq. (25) finally gives the temperature distribution in a semiin- 
finite :Immobile medium radiating into the surrounding medium by Newton's and the Stefan-- 
Boltzmann laws: 

o+ ( 7"(x, t) = To (x, t) = r t  + 1/--s " - Ti- + Os qot-- 

(32) 

_ 2To (Biv "--~@ BipT~ xErfc 2----~--x ~ 4t .-o (Bic. -~- Bipf.) F ~ t ' G, / 2 ' --2' 4---/-- ' 

where Erfc(z) is the complementary minor of the error function, Erfc(z)= i exp(--s2)ds; Gi(=' 7' z), 
z 

i s  a degenera te  hypergeometr ic  func t ion  of  the  second s o r t ,  

O,(~, ?, z) - 1 [exp(.-zt)t  =-' (1 § t)v--=-'dt; 
r (~) , ! 

0 

and r(z) is the Euler g~mma function. 

If the semlinfinite body radiates only according to Newton's law, then the series in 
Eq. (32) is s,~n~ed and for T(x, t) we obtain a closed formula. 
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NOTATION 

t, time; M, point in space; p(M, t), density of medium; pCM, t), pressure; u t), ve- 
locity of medium; T(M, t), temperature of medium; a(M, t) = l/Cpp(M, t), thermal diffuslvlty 

of medium; l, thermal conductivity of medium; Cp, specific heat; s(M, t), coefficient of ab- 

sorption; oo, Stefarr-Boltzmann constant; A(M, t), absorptive capability of boundary surface; 
V, volume occupied by medium; B, dynamic viscosity coefficient; q, efficiency of internal heat 
sources (sinks); Diss f(u dissipative Rayleigh function; Ti(M), initial temperature; Tw(M , 

t), temperature of boundary surface; Tc(M , t), temperature of surrounding medium; Sem' heat 

emission coefficient; z(t) = T(0, t), temperature at boundary of semllnflnlte body; ~(z) Euler 
gsm~a function; G~(s, y, z), degeneratehypergeometrlc function of the second sort; Erfc (z), 
complementary minor of error function. 

i. 

2. 

3. 

. 

5. 
6. 
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MATHEMATICAL MODELING OF RADIANT HEAT-EXCHANGE PROCESSES 

IN METALLURGICAL THERMOTECHNOLOGY 

A. S. Nevskll and V. G. Lisienko UDC 536.3:51.001.57:669,02/09 

Various models of the heat-exchange process in metallurgical furnaces are consid- 
ered: old methods of calculation, the zonal method, and mathematical models of 
radient and complex heat exchange in plane and cylindrical channels. 

A new concept of the "mathematical model" has appeared in contemporary scientific llt- 
erature. The creation of a mathematical model must be preceded by development of a physical 
picture of the phenomena (physical model) which determines the geometry of the system and 
peculiarities of the processes described by the math~matlcal model, let us say the character 
of the motion of the medium (stack gases), the values of physical constants, the rate of fuel 
burnup, etc. These processes are presented in a simplified manner, since an accurate descrip- 
tion of the operation of the aggregate is impossible. This is the first stage of the prob- 
lem. The second is the composition of equations describing the processes and boundary con- 
ditlons. This is the mathematical modeling. The third stage is the solution of these equa- 
tions, i.e., obtaining concrete results for model (furnace) operation. The three stages to- 
gether comprise a method for calculating heat transfer in a furnace. Finally, the last step 
is adaptation of the model to the actual aggregate, i.e., verification of the calculation 
with experimental data with subsequent correetlon, bringing to llfe, as it were, the mathe- 
matical model developed. 
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